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This Special Report presents the consensus of the Sum-
mit on Management of Radiation Dose in Computed To-
mography (CT) (held in February 2011), which brought 
together participants from academia, clinical practice, 
industry, and regulatory and funding agencies to identify 
the steps required to reduce the effective dose from rou-
tine CT examinations to less than 1 mSv. The most prom-
ising technologies and methods discussed at the summit 
include innovations and developments in x-ray sources; 
detectors; and image reconstruction, noise reduction, 
and postprocessing algorithms. Access to raw projection 
data and standard data sets for algorithm validation and 
optimization is a clear need, as is the need for new, clin-
ically relevant metrics of image quality and diagnostic 
performance. Current commercially available techniques 
such as automatic exposure control, optimization of tube 
potential, beam-shaping filters, and dynamic z-axis col-
limators are important, and education to successfully 
implement these methods routinely is critically needed. 
Other methods that are just becoming widely available, 
such as iterative reconstruction, noise reduction, and 
postprocessing algorithms, will also have an important 
role. Together, these existing techniques can reduce dose 
by a factor of two to four. Technical advances that show 
considerable promise for additional dose reduction but 
are several years or more from commercial availability in-
clude compressed sensing, volume of interest and interior 
tomography techniques, and photon-counting detectors. 
This report offers a strategic roadmap for the CT user and 
research and manufacturer communities toward routinely 
achieving effective doses of less than 1 mSv, which is well 
below the average annual dose from naturally occurring 
sources of radiation.
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defined for scanner output values (vol-
ume CT dose index values) appropri-
ate to an individual of similar size and 
shape as the International Commission 
for Radiation Protection’s reference 
person (a 70–80-kg adult) (5). This 
yields typical effective dose values of 
1–2 mSv for routine head CT, less than 
1 to 12 mSv for coronary CT angiog-
raphy, 5–7 mSv for routine thoracic or 
abdominal CT, and 3–4 mSv for routine 
pelvic CT (6). Across all examination 
types, the average effective dose from 
a CT examination in the United States 
in 2006 was approximately 6.5 mSv (7).

The risk of harm from effective 
doses of less than 100 mSv is a highly 
controversial topic. At the effective dos-
es associated with CT (approximately 
1–12 mSv), the risks are extremely 
small or may in fact be zero (8,9). How-
ever, because the annual effective dose 
to the U.S. population from naturally 
occurring sources is, on average, 3 mSv 
(range, 1–10 mSv), and because no 
geographic correlation with cancer risk 
has been established between areas of 
lower and higher background radiation 
levels, summit organizers and attendees 
agreed that by reducing the effective 
doses associated with most routine 

Administration, the American College of 
Radiology, the American College of Car-
diology, and the Academy of Radiology 
Research, the summit brought together 
participants from academia, clinical 
practice, industry, and regulatory and 
funding agencies to identify the steps re-
quired to reduce the effective dose from 
routine CT examinations to less than 1 
mSv, which is below annual background 
levels of ionizing radiation.

To compare the amount of ioniz-
ing radiation from different types of 
exposures, such as naturally occur-
ring sources and CT examinations, the 
quantity effective dose is used (1,2). 
Effective dose takes into account the 
complex distribution of dose to dif-
ferent organs and tissues, and the 
varying radiation sensitivities of these 
organs and tissues, to compute a single 
number that estimates the overall detri-
ment from the exposure to a reference 
person within a general population. 
Defined by the International Commis-
sion for Radiation Protection, effective 
dose calculations use organ doses that 
are averaged across sex as well as tis-
sue risk coefficients that are averaged 
across age (1,3,4). Thus, effective dose 
describes the radiation detriment from 
a specific source, such as radon, a CT 
examination, or chest radiography, as 
opposed to describing the dose received 
by any individual (4). Although scanner 
settings must be tailored to the size of 
the individual patient, effective dose is 

On February 24 and 25, 2011, more 
than 120 members of the com-
puted tomography (CT) commu-

nity gathered in Bethesda, Md, for a 
summit on the management of radiation 
dose in CT. Sponsored by the National 
Institute of Biomedical Imaging and 
Bioengineering, the Coalition for Imag-
ing and Bioengineering Research, the 
National Institute of Child Health and 
Human Development, and the National 
Heart Lung and Blood Institute and 
supported by the U.S. Food and Drug 

Implications for Patient Care

 n Several methods are currently 
commercially available for re-
ducing radiation dose from CT; 
in addition to implementing 
these methods, users can 
manage radiation doses from CT 
through protocol optimization 
and by adjusting for patient size 
and diagnostic task.

 n  If implemented in conjunction 
with these current approaches, 
the advances proposed at the 
summit should further reduce 
the radiation dose from routine 
CT examinations to well below 
background levels.

Advances in Knowledge

 n At a summit on the management 
of radiation dose from CT, strat-
egies and technical advancements 
were identified that could reduce 
the dose from routine CT exami-
nation by approximately a factor 
of 10; for a routine single-phase 
CT scan of the abdomen and 
pelvis, this would reduce the ef-
fective dose from approximately 
10 mSv to less than 1 mSv (sub-
millisievert levels), which is only 
one-third of the average annual 
dose from background radiation 
sources such as radon and 
cosmic rays.

 n Use of existing dose optimization 
and dose reduction strategies 
and techniques can reduce the 
dose from CT by a factor of two 
to four relative to typical doses 
from 64-row (and higher) CT 
systems.

 n Novel algorithms (eg, interior 
tomographic reconstruction) and 
technologies (eg, photon-count-
ing detectors) have the potential 
to reduce dose by another factor 
of two to three.

 n Access to raw projection data, 
standardized test data sets, and 
noise insertion software tools is 
needed and advised to accelerate 
the development and validation 
of novel reconstruction or noise 
reduction algorithms and to facil-
itate determination of minimally 
acceptable dose levels for a range 
of diagnostic tasks.
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energies. This results in beam-harden-
ing effects, which cause errors in CT 
numbers and artifacts behind highly at-
tenuating materials. However, monoener-
getic sources, such as synchrotrons, are 
not likely to be clinically practical. Thus, 
for the foreseeable future, improvements 
in x-ray source technology will continue 
to focus on improvements to x-ray tubes 
and generators, including (a) increasing 
the range of tube potential values avail-
able to allow greater customization of 

research and manufacturer communities 
for reducing dose by a factor of 10 rela-
tive to 64-row (and higher) CT systems 
(Fig 1), which, when accomplished, will 
result in routine CT scanning at effective 
doses of less than 1 mSv.

Data Acquisition: Innovations Required 
in X-ray Sources

The x-ray tube in a CT scanner produces 
x-rays with a continuous spectrum of 

CT examinations to a fraction of back-
ground dose levels we can reach a dose 
level at which long-term risks can be 
considered negligible. It was therefore 
the goal of this summit to determine 
the technologies and strategies that will 
result in routine CT being performed at 
or below an effective dose of 1 mSv, 
hence the phrase “submillisievert CT.”

In this report, we summarize the 
advances in data acquisition, image re-
construction, and optimization processes 
that were identified by consensus as being 
necessary to achieve effective dose levels 
for routine CT that are well below back-
ground levels. Some of these techniques 
are already commercially available, in-
cluding automatic exposure control (10–
12), automatic tube potential selection 
(13), beam-shaping filters, and dynamic 
z-axis collimators (14,15). Others, such 
as iterative reconstruction algorithms and 
noise reduction methods, are just becom-
ing widely available (16–23). Together, 
these techniques can reduce dose by a 
factor of two to four (Table). Other tech-
nical advances that show considerable 
promise are also described, including 
PCDs and interior tomographic recon-
struction algorithms; however, these are 
several years or more from commercial 
availability. Nonetheless, there are strat-
egies to accelerate the adoption of exist-
ing dose reduction techniques, optimize 
scanning protocols, and validate emerg-
ing technologies. Chief among these are 
software tools to simulate protocols with 
lower dose settings and access to raw 
patient data. The following provides a 
strategic roadmap for the CT user and 

Estimated Reduction in Dose from Various Technical Advances

Technique and Reference No. Dose Reductions Suggested in the Literature (%)
Reduction in Dose in Typical  
Adult Patient (%)

Automatic exposure control (12,24) 5 (obese patients), 50 (slim patients or children) 25
X-ray source (spectrum) optimization (25) 5–15 (large adult), 20–30 (average adult), 40–50 (children) 25
Z-axis beam collimation (14,15) 10–25 (children or adult cardiac CT), 5–15 (adult body CT) 10
Iterative reconstruction (26,27) 25–50 (average adult) 45
Iterative reconstruction with compressed sensing (28) 70 (adult)
VOI imaging (29) or interior tomography (30) 50–65 outside VOI (large adult), 25–30 inside VOI (large adult) 40
PCD (31) 30–40 (average adult) 35

Note.—PCD = photon-counting detector, VOI = volume of interest.

Figure 1

Figure 1: Bar chart shows anticipated reduction in dose owing to cumulative effect of various dose-
reduction approaches for single-phase CT of the abdomen and pelvis. Data were obtained with the estimated 
percentage dose reductions given in the Table. For most multidetector CT (MDCT) systems with at least 64 
detector rows, the effective dose to a reference adult (~70–80 kg) is estimated to be 10 mSv. With addition 
of automatic exposure control systems that modulate tube current according to patient attenuation, the 
estimated dose reduction for a typical adult is 25%, reducing the effective dose from single-phase CT of the 
abdomen and pelvis to 7.5 mSv. Use of optimal x-ray spectra would further decrease effective dose by 25% 
to 5.6 mSv. Each successive dose-reduction approach is applied to the previous dose estimate, ordered 
according to the likelihood of widespread clinical availability and use. After all methods discussed herein are 
available clinically, the effective dose associated with this examination is anticipated to have been reduced by 
approximately a factor of 10, from 10 to 1.1 mSv.
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many contrast-enhanced applications 
and about 25% as an average over all 
applications. Achieving these goals 
will require cooperation with industry, 
where x-ray source and generator de-
velopments are most often initiated.

Data Acquisition: Innovations Required 
in Detector Technology

Problems with Current CT Detectors
Currently available clinical CT systems 
use a type of detector that integrates 
all of the energy deposited over a finite 
time period to produce a single signal. 
No information is available about the 
individual photons interacting with the 
detector; the signal produced by a sin-
gle 120-keV photon would be identical 
to that produced by three 40-keV pho-
tons. The inability of energy-integrating 
detectors to differentiate between pho-
tons of different energies presents two 
major limitations to achieving routine 
submillisievert CT.

First, the differences in soft-tissue 
x-ray attenuation are smaller at higher 
energies than at lower energies. How-
ever, higher-energy photons dominate 
the measured signal, resulting in rela-
tively poor soft-tissue contrast.

Second, to visualize these subtle 
differences in soft-tissue contrast, im-
age noise must be kept low, requiring 
larger x-ray exposures.

would require substantially higher tube 
potentials than are used today (eg, 180 
kV). This would provide an increased 
CNR per unit of dose (37).

As tube potential is decreased, tube 
current must be increased more strongly 
than the tube potential decrease to obtain 
sufficient photon intensity at short scan-
ner rotation times (,0.5 second). How-
ever, because power is proportional to 
the product of the tube potential and tube 
current, increased power is necessary to 
provide sufficient photon intensity at low 
tube potentials. Thus, the realization of 
dose reduction from the use of optimized 
tube potential will require new x-ray tube 
and generator technologies that are ca-
pable of operating at high power levels 
at previously unused potentials (eg, ,80 
kV and .140 kV). High power levels also 
allow for more aggressive beam filtration, 
which reduces the number of low-ener-
gy photons in the beam and results in a 
decrease in patient dose. For the higher 
spatial resolution required by some spe-
cial applications, a reduction of focal spot 
size is an additional goal.

In summary, a greater range of 
tube potentials and higher power levels 
to allow for higher filtration are the 
main developmental goals for clinical 
CT systems. Smaller focal spot sizes 
and novel source designs are important 
topics for ongoing technical develop-
ment. These developments may allow 
for dose reductions of up to 50% in 

scanning parameters to specific patients 
and clinical applications; (b) increasing 
generator power levels to allow higher 
tube current values for use with lower 
tube potentials; (c) optimizing the compo-
sition, shape, and thickness of the x-ray 
filter to deliver x-ray intensities that are 
matched to the patient attenuation pro-
file and to produce as “monoenergetic” of 
a spectrum as possible; and (d) produc-
ing small, uniform, and stable focal spots 
that maintain their shape and size as tube 
potential and tube current are varied so 
that spatial resolution is not affected by 
changes in x-ray intensity (number of 
photons per square centimeter).

Selection of the optimal tube poten-
tial and filtration is currently an active 
area of research (25,32–36). Studies 
have shown that the most dose-efficient 
tube potential depends not only on the 
diagnostic task but also the patient 
size (25,35). For example, for contrast 
material–enhanced scans in small- and 
medium-sized patients, tube potentials 
of 80 and 100 kV provide a higher io-
dine contrast-to-noise ratio (CNR) for 
the same scanner radiation output and 
allow for a dose reduction of up to 50% 
compared with a tube potential of 120 
kV (Fig 2). However, for unenhanced 
scans of large and obese patients, tube 
potentials of 140 kV and higher provide 
optimal image quality. The use of con-
trast media with k edges in the range of 
50–90 keV (eg, ytterbium and tantalum) 

Figure 2

Figure 2: (a) Graph shows iodine CNR as a function of tube potential for three phantom sizes. The same volume CT dose 
index was used for the four tube potentials for each phantom (small, 6.6 mGy; medium, 15.3 mGy; large, 37.0 mGy). (b) Graph 
shows relative dose required to match the iodine CNR as a function of tube potential for the three phantom sizes. CTDI

vol
 = 

volume CT dose index. 
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available because a number of techni-
cal challenges remain to be addressed.

Technical Challenges
For various reasons, the counts mea-
sured by PCDs can be lower or higher 
than the true counts, distorting the re-
corded spectrum. For example, if an x-
ray photon arrives at the detector near 
the edge of a detector pixel, it may be 
counted by multiple adjacent pixels, 
each at lower energies. This is referred 
to as “charge sharing” and results in an 
increase in counts and incorrect energy 
data. Furthermore, when a detector’s 
response time is not sufficiently fast, 
multiple pulses generated by nearly co-
incident photons may be added and re-
corded as one pulse. This is referred to 
as “pulse pile up” and results in a loss of 
counts and incorrect energy data (Fig 3).  
If the x-ray intensity is too high, new 
photons constantly arrive at the detec-
tor and saturate its response.

The unattenuated x-ray flux reach-
ing the detectors of current clinical CT 
systems is very high—as large as 109 
counts per second per square millime-
ter at 1 m from the x-ray focal spot, 
which is typical for clinical CT systems. 
The current state of the art in PCD 
technology can operate only up to 0.6 
3 106 counts per second per square 
millimeter with 95% detection effi-
ciency, a factor of 103 lower than that 
with current clinical systems. Thus, 
we anticipate that several issues will 
need to be addressed in parallel to 
make submillisievert PCD CT a clini-
cal reality. Specifically, four key areas 
must be addressed: beam-shaping fil-
ters, PCD technology, calibration and 
compensation methods, and image 
reconstruction.

Beam-shaping filters.—CT systems 
use an attenuating filter to “shape” the 
intensity of the x-ray beam across the 
field of view. This is often referred to 
as a bow-tie filter because it is thick at 
each end and thin in the middle. The 
purposes of the shaping filter are to 
equalize the x-ray intensity to the de-
tector and to reduce dose to the patient 
periphery. For PCDs, it is essential to 
manage the intensity near the edges 
of objects. This is especially crucial 

application-specific integrated circuit. 
The height of the pulse is compared 
with specified energy thresholds. A 
count is registered in the counter as-
sociated with an energy threshold if 
the pulse height exceeds the threshold 
value; thus, all photons above a thresh-
old will be counted. To determine the 
number of photons detected within 
a specific energy window, the counts 
measured by using two different energy 
thresholds are subtracted to yield the 
number of counts occurring in the en-
ergy window defined by the two thresh-
old values.

PCD for Dose Reduction
PCDs decrease image noise and in-
crease tissue contrast relative to 
energy-integrating detectors. These 
properties can be used to improve the 
quality of CT images relative to what 
is currently attainable. Alternatively, 
these properties can be exploited to de-
crease patient radiation dose or to de-
crease the amount of contrast material 
given to patients.

PCDs perform energy discrimina-
tion on the basis of an analysis of the 
height of each measured signal (41–45). 
Electronic and Swank noise affect the 
measured energy for each photon but 
do not change photon counts. Thus, 
PCDs produce data that are minimally 
affected by detector noise, which is 
highly desirable for submillisievert CT.

Unlike energy-integrating de-
tectors, PCDs apply equal weights 
to all photons, including the lower-
energy photons that carry the great-
est amount of tissue contrast. This 
allows for optimal weighting of the 
data from each energy window, which 
can occur during or after the image 
reconstruction process (46–48) and 
can be tailored to the imaging task. 
A computer simulation (31) estimated 
that the CNR of bone against water 
and contrast-enhanced blood against 
water could be improved by 18% and 
28%, respectively, by using a PCD. 
This implies that current CNR values 
can be achieved with radiation doses 
that are reduced by 29% and 39%, re-
spectively. CT systems equipped with 
PCDs are not, however, commercially 

The absence of energy informa-
tion regarding individual photons also 
limits the quantitative potential of CT. 
CT numbers do not accurately measure 
the linear attenuation coefficient of tis-
sue owing to imprecise assumptions 
regarding photon energies. Further-
more, CT numbers cannot always help 
differentiate between different types 
of tissue: A tissue composed of higher 
atomic number elements may have the 
same CT number as a tissue composed 
of lower atomic number elements if the 
former tissue is not very dense and the 
latter tissue is sufficiently dense.

Finally, energy-integrating detectors 
add electronic and Swank noise (38) to 
the measured signal. Swank noise oc-
curs due to variations in a scintillation 
detector’s ability to convert x-rays to 
visible light photons, variations in the 
depth of this conversion, and variations 
in the ability of the created photon to 
escape the crystal. At the low photon 
counts associated with reduced dose 
levels or highly attenuating patients, 
these sources of noise severely degrade 
image quality.

Detectors that can count individual 
photons and discriminate their individ-
ual energies (39–41) have the potential 
to overcome these limitations. These 
detectors are referred to as PCDs or 
energy-discriminating detectors and 
are described hereafter by the acronym 
PCD.

PCD Design
To detect individual photons and re-
solve their energies into multiple win-
dows, a 2–3-mm-thick crystal (typically 
cadmium telluride) is attached to a 
positively charged anode that is divided 
into pixels of 200–1000 mm (42,43). 
The crystal and anode are connected to 
application-specific integrated circuits. 
The number of energy windows cur-
rently varies from two to six, depending 
on the PCD manufacturer.

PCDs count the number of photons 
within each of the energy windows. 
The energy deposited by each x-ray 
photon generates an electrical charge. 
The charge travels within the detec-
tor crystal toward the anode and cre-
ates a pulse that is processed by the 
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dose without compromising diagnostic 
performance.

Low photon counts in the measured 
projection data can be voluntarily pro-
duced by reducing the x-ray intensity 
and/or number of projections, which 
proportionally decreases the radiation 
dose. Low photon counts can also be the 
result of large patient size or the pres-
ence of metallic implants, the prevalence 
of which continues to increase in the 
U.S. population. With current commer-
cial CT systems, reducing the x-ray in-
tensity per projection is straightforward 
and can be accomplished by reducing the 
tube current–time product or tube po-
tential. The ability to reduce the number 
of projections, however, is not currently 
available with conventional CT systems, 
although it can be accomplished in spe-
cial cases like C-arm–based CT.

Reconstruction of projection data 
into an accurate representation of the 
scanned object by using filtered back-
projection techniques requires that the 
projection data include complete infor-
mation about the entire cross section of 
the imaging object. If a patient is wider 
than the irradiated VOI, attenuation 
measured in some projections will be 
missing from other projections. This in-
consistency in the projection data causes 
bright artifacts at the lateral aspects of 
the image (Fig 4). These artifacts are re-
ferred to as truncation artifacts because 
some portions of the transmission pro-
file of the object are missing, or trun-
cated, in the measured projection.

in PCD technology to accept a 100-fold 
increase in count rates, (c) methods 
to calibrate PCDs to compensate for 
detector imperfections, and (d) new 
PCD-adapted image reconstruction al-
gorithms. The benefits of these technical 
advances will include improved contrast 
between similar soft-tissue types, im-
proved utilization of iodinated contrast 
material, and decreased image noise at 
low doses. Improved quantitative accu-
racy, particularly in the assessment of 
material elemental composition, and 
molecularly targeted, nanoparticle-
based imaging are additional benefits 
that PCD CT will provide.

Algorithms and Computing Power: 
Innovations Required in Image 
Reconstruction, Data Collection 
Schemes, and Postprocessing

Image reconstruction and postpro-
cessing can be used to reduce dose or 
provide new or more accurate clinical 
information. Contemporary challenges 
in this field are primarily related to 
problems associated with low photon 
counts and incomplete projection data. 
(A projection is defined as all the x-ray 
transmission measurements made at 
one position of the x-ray tube as it ro-
tates around the patient; ie, it is all data 
for one angular position.) The ability 
to reconstruct satisfactory CT images 
from projection data with low photon 
counts or incomplete data will define 
how much we can reduce radiation 

for ray paths outside the object, where 
the unattenuated x-ray intensity will 
be very high. Furthermore, because 
the projection of the object’s edge will 
constantly change positions along the 
arc of the detector as the tube rotates 
around the object, a single filter shape 
will not suffice. Rather, dynamic filtra-
tion or collimation of the beam across 
the field of view will be required to re-
duce the high x-ray intensity outside of 
the object. This should reduce the max-
imum count rate that needs to be mea-
sured by the PCD by a factor of 10–100.

PCD technology.—Improvements in 
crystals, application-specific integrated 
circuits, and other hardware compo-
nents are needed to address pulse pile 
up and charge-sharing issues. Consid-
ering the attenuation achieved by using 
dynamic beam-shaping filters, the opera-
tional count rate will need to be as large 
as 107–108 counts per second per square 
millimeter (this assumes a 95% detection 
efficiency because 5% is a typical upper 
limit of pile-up errors that would be gen-
erally acceptable without correction). 

Calibration and compensation 
methods.—Current designs and proto-
type systems suffer from temporal and 
pixel-to-pixel variations in detector re-
sponse, which will lead to substantial 
ring artifacts on reconstructed images 
if not adequately addressed. Thus, the 
third crucial need for the development 
of PCD CT is the development of algo-
rithms to compensate for spatial and 
temporal variations in detector re-
sponse. Such algorithmic approaches 
will be required even with hardware 
improvements.

Image reconstruction.—The fourth 
area where technologic improvement is 
needed is in image reconstruction. Ex-
isting algorithms will need to be adapt-
ed to the unique characteristics of PCD 
CT and new techniques may need to 
be developed. Continued investigation 
of the optimal weighting factors to be 
applied to specific energy windows will 
also be required (47,49).

In summary, there are at least four 
key areas of investigation that should be 
supported to enable clinical PCD CT. 
These are (a) filters to shape the inten-
sity of the x-ray beam, (b) improvements 

Figure 3

Figure 3: When a detector’s 
response time is not sufficiently 
fast, the two pulses generated 
by detection of two nearly co-
incident photons may be added 
and recorded as one pulse. This 
is referred to as pulse pile up 
and results in loss of counts 
and incorrect energy data. In 
this example, five true photons 
are counted as three observed 
pulses. The energies assigned 
to the second and third pulses 
overestimate the true photon en-
ergies. E

1
, E

2
, and E

3
 are energy 

thresholds.
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statistical models of noise are included in 
this process, the technique is referred to 
as statistical iterative reconstruction.

In addition to their usefulness when 
photon counts are low, iterative recon-
struction algorithms are of consider-
able value when projection data are 
inconsistent or incomplete, as occurs 
with view truncation, or when data are 
corrupted, as occurs with metallic im-
plants. Another important advantage of 
iterative reconstruction is the ability to 
account for nonuniformities in detec-
tor response as well as beam hardening 
and scatter. When the physics of the CT 
system (eg, the system geometry model 
or noise model) is taken into account, 
the technique is often referred to as 
model-based iterative reconstruction 
(21,50). For example, noise levels in 
the projection data can be modeled and 
projections with high noise levels given a 
lower weight in the reconstruction than 
low noise levels. CNRs can be improved 
with these types of methods, even at ex-
tremely low radiation dose levels (21). A 
final strength of iterative reconstruction 
is the avoidance of data filtration before 
the backprojection process, which can 
lower spatial resolution.

Noise Reduction Techniques
In contrast to iterative reconstruc-
tion methods, which form an image 
from the projection data, noise re-
duction techniques only reduce noise 
levels, either in the projection data 
(17–19,23,51–53) or on the recon-
structed image (22,54). If the noise 
reduction is performed on projection 
data, image reconstruction must still 

be able to be produced from measure-
ments made by using low photon inten-
sities. The statistical noise associated 
with the detection of a discrete number 
of photons can be modeled as a Pois-
son process. In addition, noise sources 
in other parts of the imaging chain can 
be statistically modeled. Thus, mathe-
matic methods that attempt to deter-
mine the most likely true signal from a 
set of noisy (uncertain) projection data 
can be applied to reduce image noise. 
These techniques require the use of it-
erative reconstruction methods.

In iterative reconstruction, an initial 
estimate of the “truth” (ie, the object 
being imaged) is generated from the ac-
quired projection data. This is typically 
done by using conventional filtered back-
projection reconstruction methods, which 
are very fast. From this initial estimate, 
the system simulates x-ray projection 
data. This simulation step can include a 
detailed model of the scanner geometry 
(eg, focal spot size, detector spacing). 
It also includes a model of the quantum 
noise, such as a Poisson model. In es-
sence, the algorithm performs “virtual 
CT scanning” on the initial filtered back-
projection image to acquire a new set of 
projections. These simulated projections 
are compared with the actually measured 
projections and the differences used to 
update the initial estimate of the truth. 
This process is repeated until the differ-
ences between the actual and simulated 
projections are acceptably small (Fig 5). 
This technique can produce images 
that more closely resemble the scanned 
object. Noise and artifacts can be re-
duced and spatial detail improved. When 

CT image reconstruction tech-
niques, data collection schemes, and 
postprocessing algorithms have ad-
vanced considerably in recent years. 
Iterative reconstruction and algorithms 
such as projection- or image-based 
noise reduction are currently being in-
troduced into many practices to reduce 
CT doses. Methods requiring unique 
data collection schemes, such as com-
pressed sensing, VOI scanning, and in-
terior tomography, require additional 
technical developments before they can 
be used clinically. For example, tech-
niques to pulse the x-ray beam as the 
tube rotates are needed to take advan-
tage of compressed sensing methods 
that require fewer projections, and colli-
mators that move within the x-ray beam 
plane are needed to take advantage of 
VOI and interior tomography methods. 
To adopt any of these methods clinically, 
the optimal trade-off between accuracy 
(fidelity) of the reconstructed image 
and image noise levels, and the degree 
to which techniques can be combined, 
must be also determined. The following 
sections describe several of the most 
promising methods for reducing CT 
dose requirements by means of image 
reconstruction, modified data collection 
schemes, and postprocessing.

Iterative Reconstruction Methods
To enable a significant reduction in 
dose, diagnostic-quality images must 

Figure 4

Figure 4: Axial CT image of thorax. Truncation ar-
tifacts, which appear as areas of very high attenua-
tion at left and right edges of patient, are caused by 
missing projection data. This occurs when portions 
of the patient lie outside the irradiated VOI.

Figure 5

Figure 5: Diagram illustrates iterative reconstruction process 
(see text for detailed explanation).
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providing routine submillisievert clinical 
CT imaging (59–62).

VOI Imaging and Interior  
Tomography

One type of CT image reconstruction, 
known as interior tomography, pur-
posely avoids irradiating the complete 
patient, reducing dose to regions outside 
the VOI. For example, to reduce dose 
for cardiac CT, the x-ray beam could be 
collimated to irradiate only the central 
region of the patient. In this situation, 
all projections are highly truncated. At-
tenuation from peripheral structures 
is measured in some views and not in 
others, creating an impossible task for 
traditional filtered backprojection recon-
struction algorithms. Various algorithms 
(using either noniterative or iterative 
methods) have been proposed for re-
constructing CT images from highly 
truncated data sets (30,63–67). These 
are referred to as interior tomography 
reconstruction algorithms. Alternatively, 
the peripheral regions of the patient 
cross section can be irradiated with 
greatly reduced dose levels, avoiding the 
severe truncation of the projection data 
(65,66). Reconstructed images have de-
creased quality outside the VOI but full 
image quality within the VOI (Fig 6). 
This is referred to as VOI imaging. An 
important distinction between interior 
tomography and VOI imaging is that 

and reproducible measures from rela-
tively noisy data sets, decreasing the ra-
diation dose requirements.

Compressed Sensing
An additional advantage of iterative im-
age reconstruction is that the required 
number of projection angles can be 
drastically reduced (55–58). One such 
technique, referred to as compressed 
sensing, can be used to reconstruct im-
ages from far fewer projections (eg, 20–
30) than the number currently used (ap-
proximately 1000). If all other scanning 
parameters remain the same, the dose 
is reduced in proportion to the reduc-
tion in the number of projections. Com-
pressed sensing techniques are used in 
other disciplines, such as photography, 
and seek to recover a full-quality image 
(eg, a 7-megabyte digital photograph) 
by using a greatly reduced input data 
set (eg, only a few hundred kilobytes 
of data). In the world of CT imaging, 
this would translate to achieving the full 
level of image quality with many fewer 
projections. If the x-ray beam could be 
shut off or blocked for small periods 
of time as the tube rotates around the 
patient, the dose to the patient could 
be reduced. This capability, however, 
is not available in current CT systems. 
Still, the combination of statistical iter-
ative reconstruction methods with com-
pressed sensing holds great potential for 

be performed. A typical scenario is to 
apply noise reduction to the projection 
data and then use filtered backprojec-
tion to reconstruct the image. Such im-
ages, however, do not benefit from the 
other strengths of iterative reconstruc-
tion, such as decreasing artifacts or 
improving spatial resolution. Rather, 
spatial resolution may be degraded 
owing to the filtering (noise reduction) 
performed on the projection data be-
fore image reconstruction.

Postprocessing Techniques
Postprocessing algorithms are also used 
to accomplish a range of tasks that are 
highly relevant to enabling routine sub-
millisievert CT. These algorithms include 
those that automatically segment specific 
image features or perform automated 
quantitative measurements. Fundamen-
tally, there is nothing wrong with noisy 
images as long as features of interest can 
be extracted by means of postprocessing 
and expert interpretation. An example 
of this is CT perfusion imaging, where 
images measured at multiple points in 
time can individually be quite noisy. The 
mathematic processes used to extract 
the time-attenuation curves from these 
images are rather immune to noise, par-
ticularly when they average signal over 
reasonably large regions. Thus, improve-
ments in postprocessing algorithms may 
further the ability to extract accurate 

Figure 6

Figure 6: (a) Illustration of VOI imaging. A physical filter reduces photon intensity to regions outside the VOI. (b) Axial CT images of abdomen. VOI image was ob-
tained with simulation, where noise was inserted into original data set (left image) at portions of the projections associated with regions outside the VOI (right image). 
Dose reductions outside the VOI of 50%–65% and within the VOI of 25%–30% were able to be simulated while preserving image quality within the VOI.
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Image Quality Metrics and Processes: 
Innovations Required to Perform 
Clinically Relevant Protocol 
Optimization

Dose optimization is used to determine 
the minimum dose level that will main-
tain the required diagnostic perfor-
mance for each specific patient and di-
agnostic task. This can be approached 
in two steps. The first step is to appro-
priately define the target image quality 
for each specific diagnostic task while 
not requiring image quality higher than 
necessary to make the diagnosis. The 
second step is to improve the dose 
efficiency with which the system can 
achieve this target image quality.

Specific methods to improve dose 
efficiency in CT include those described 
in the previous sections. However, no 
matter how dose efficient a system may 
be, setting the target noise level too low 
(ie, target image quality is set too high) 
will deliver a radiation dose higher 
than necessary. Therefore, appropri-
ately defining the target image quality 
for each diagnostic task is essential. 
Owing to the complexity of the clini-
cal indications for CT, the wide range 
of CT examination types, variations in 
observer performance and preferences, 
and differences in performance among 
scanners, finding the appropriate target 
image quality for each diagnostic task is 
very challenging.

The standard of reference for de-
termining the target image quality that 
can yield an acceptable imaging out-
come is the performance of trained hu-
man observers for a clinically relevant 
task. Metrics of image quality that are 
derived from phantom measurements 
are likely correlated with such observer 
performance, but the absolute image 
quality requirements for adequate di-
agnostic performance are difficult to 
quantify. With this lack of absolute im-
age quality targets, users go about the 
tasks of protocol selection and optimi-
zation using various qualitative or semi-
quantitative approaches.

The effect of various postacquisi-
tion parameters can be evaluated ret-
rospectively. The same patient data are 
reconstructed with a range of image 

the validation of results from a simple 
phantom can be generalized to human 
anatomy. However, iterative recon-
struction algorithms are nonlinear and 
results from phantom measurements 
will not predict performance in hu-
mans. Therefore, projection data from 
actual patient scans are required for re-
searchers to compare and optimize the 
performance of iterative reconstruc-
tion. The availability of standardized 
data sets would allow researchers from 
any discipline to evaluate their algo-
rithms against the results of competing 
methods, helping them to more rapidly 
determine which methods are superior. 
Without access to such data, algorithm 
researchers cannot address clinically 
relevant problems, making the trans-
lation from laboratory development 
to clinical practice very difficult, if not 
impossible.

A solution to this issue is to re-
quire all CT manufacturers to partic-
ipate in a process whereby the pro-
prietary information is stripped from 
data files and projection data are 
provided to researchers, leveraging 
the tremendous knowledge in non-
medical image processing disciplines 
toward achieving submillisievert CT. 
A national CT data resource center 
should be created to oversee these op-
erations, under confidentiality agree 
ments with the manufacturers. Dif-
ferent levels of raw data may be pre-
pared by the center on the basis of 
users’ requests, such as data before 
or after the logarithm is performed or 
with or without beam-hardening cor-
rection. Although such a center would 
not in itself reduce dose, the capa-
bilities that it would provide are fun-
damental to routinely achieving sub-
millisievert effective doses. The user 
and research community would have 
access to the data needed to validate 
and optimize new algorithms, and the 
manufacturers’ proprietary informa-
tion contained in the original raw data 
would be protected.

In summary, there is a distinct need 
to provide raw projection data to a va-
riety of users. Collaboration with man-
ufacturers will be essential for this to 
occur.

filtered backprojection reconstruction 
can be used with VOI data sets.

Improvements in Computing Power 
Required for Clinical Implementation of 
Iterative Reconstruction, Noise Reduction, 
and Postprocessing Techniques
Regardless of whether iterative recon-
struction, noise reduction, or postpro-
cessing approaches are used, the ability 
to decrease image noise is what funda-
mentally enables reductions in patient 
dose. Knowing that these algorithms 
can use relatively noisy projection mea-
surements or images to achieve accept-
able noise levels and accurate quantita-
tive parameters, users can decrease the 
radiation output of the scanner, con-
fident that the diagnostic value of the 
obtained information is retained.

Currently, clinical CT systems can 
produce thousands of images from a sin-
gle data set and reconstruction speeds 
of approximately 40 images per second 
are typical. For iterative reconstruction, 
noise reduction, or other postprocessing 
techniques to be adopted into routine 
clinical practice, the processing times 
will need to be similar. Graphic proces-
sor unit–based platforms may provide 
the needed computational speed for 
such processing-intensive techniques to 
be used clinically to reduce CT dose.

In summary, several image recon-
struction, data collection, and post-
processing techniques may help reduce 
the dose in CT. Techniques to address 
the problems associated with reduced 
photon intensities include iterative re-
construction, noise reduction applied to 
either projection data or reconstructed 
images, and compressed sensing. Al-
ternatively, by using current levels of 
photon intensity, dose can be reduced 
by irradiating less of the patient—either 
by acquiring fewer projection measure-
ments and using compressed sensing or 
by irradiating only a selected VOI and 
using interior tomography.

Reference Data: Innovations Required 
for Access to Clinical Raw Projection 
Data

Owing to the linearity of filtered back-
projection reconstruction algorithms, 
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impractical because the pace at which 
new technologies are introduced is of-
ten faster than our ability to rigorously 
evaluate and optimize them. Software 
tools to facilitate efficient reader review 
of cases are desperately needed, so that 
the time commitments of the reader 
are reduced. Even with such tools, in-
tra- and interreader variability are a 
considerable problem, requiring that 
many readers participate in any study 
to achieve meaningful results. Thus, the 
number of parameters that can be rig-
orously optimized with human observer 
performance evaluation will be very 
limited.

A more efficient and quantitative 
method is therefore needed to perform 
radiation dose and protocol optimiza-
tion in CT. One potential approach is 
to identify the set of image quality sur-
rogates, or metrics, that can be easily 
measured but that are highly correlated 
with human diagnostic performance for 
a specific diagnostic task (Fig 7). With 
such metrics, the absolute level of im-
age quality that is determined to pro-
vide sufficient diagnostic performance 
can be established as the target image 
quality for the specific diagnostic task. 
Users of any scanner model or any soft-
ware version could then perform phan-
tom measurements, adjusting their 
scanning protocols until the required 
target image quality is achieved with 
the lowest possible dose. The time-con-
suming and expensive human observer 
performance studies are then only 
needed initially to determine the target 
image quality for each diagnostic task 
and possibly as a final confirmation of 
the predictive ability of the image qual-
ity surrogates.

Task-based Image Quality Metrics in CT
The key to quantitative methods for 
dose optimization is to determine im-
age quality metrics that can be accu-
rately measured in phantoms and that 
are highly correlated with radiologists’ 
performance for a specific diagnostic 
task. Currently, many physical metrics, 
including modulation transfer function, 
section-sensitivity profile, noise level, 
and noise power spectrum, are used 
to quantify or monitor various aspects 

sensitivity and specificity) and the radi-
ation dose level, one can determine the 
lowest acceptable dose level that can 
yield the minimally acceptable diagnos-
tic performance. This is a scientifically 
more rigorous approach for dose opti-
mization. However, because databases 
with reference standards are difficult to 
obtain, this type of evaluation is rela-
tively difficult in practice.

One of the biggest obstacles to the 
widespread use of reduced-dose simula-
tion tools is that they require access to 
the raw projection data. Because of the 
proprietary nature of the raw CT data, 
the noise insertion tools used in most 
dose-optimization studies have been de-
veloped by manufacturers. These tools 
have been available only for a few scan-
ner models and distributed to very few 
users under research agreements. The 
technical details and performance infor-
mation (eg, accuracy) are not publicly 
available. Noise insertion tools could be 
made available to users by the national 
CT data center described earlier, which 
could similarly develop and make avail-
able software tools to simulate changes 
in other scanning parameters, such as 
tube potential.

Quantitative and Objective Dose 
Optimization
Clinical evaluation by interpreting phy-
sicians using either existing or simu-
lated patient cases with various combi-
nations of scanning and reconstruction 
techniques is the reference standard 
for establishing the target image quality 
and required minimum radiation dose. 
However, this approach is very time 
consuming and expensive. There are 
simply too many combinations of acqui-
sition and reconstruction parameters 
(eg, milliampere second, collimation, 
tube potential, reconstruction kernels, 
section thickness) and a growing list 
of dose-reduction techniques (iterative 
reconstruction and noise reduction al-
gorithms). Each of these parameter 
settings could affect the image qual-
ity and thereby the optimal dose level 
for achieving the target image quality. 
Therefore, the parameter space to 
be optimized is huge. In addition, the 
time frame for such studies is often 

thicknesses and reconstruction algo-
rithms (kernels). Any parameter that 
can be retrospectively adjusted can be 
evaluated without the need to repeat-
edly expose the patient. Semiquantita-
tive scoring by a team of users can as-
sist in determining which combination 
of postreconstruction settings is most 
desirable. However, the substantial in-
terplay between postacquisition settings 
and actual acquisition settings, such as 
detector collimations, x-ray tube poten-
tial, and scanner output levels, limits 
the ability of this approach to find the 
most dose-efficient protocol for a spe-
cific diagnostic task.

Optimizing CT Protocols by Using 
Simulation of Reduced-Dose Images
One extremely valuable approach to 
protocol optimization is to use a noise 
insertion tool to simulate images at re-
duced dose levels from existing “stan-
dard dose” clinical data. A range of 
simulated dose levels can be generated 
and the diagnostic quality comparisons 
performed by using the same patient 
data, thus removing patient-specific 
variables. This approach enables radi-
ologists to determine the lowest accept-
able dose level without risk of compro-
mising a patient scan (13,68–73).

Two types of evaluation are often 
used by interpreting physicians to de-
termine the lowest acceptable dose. 
One type of evaluation uses “diagnostic 
acceptability” as the criterion, without 
considering the diagnostic accuracy. 
During the evaluation, interpreting phy-
sicians decide based solely on their pre-
vious experience whether the image is 
clinically acceptable at each dose level. 
Because of the lack of truth (eg, results 
from pathologic examination) for each 
case, the optimal dose determined in 
this type of evaluation relies heavily on 
the experience level and preference of 
the physician.

The other type of evaluation in-
volves patient databases with reference 
standards (eg, results from pathologic 
examination). The true diagnostic per-
formance of interpreting physicians can 
be determined at each dose level. On 
the basis of the relationship between 
the diagnostic outcome (in terms of 
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of model observers correlates with the 
performance of human observers (ie, 
radiologists) using clinical CT data, and 
(d) use the model observers in clinical 
CT to optimize radiation dose and scan-
ning protocols (95). This should be a 
major focus of research resources in 
the coming years (96–98). Once a set 
of task-based image quality metrics is 
determined, they can be used clinically 
to efficiently and accurately optimize 
scanning protocols and radiation dose 
levels in CT.
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